推广 热搜:   公司  政策  中国  企业  快速  上海  未来  基金  有限公司 

BDM | 用于力学生物学研究的机械刺激装置:市场、文献和专利综述

   日期:2023-06-19     评论:0    移动:http://m.uqian.cn/news/4149.html
核心提示:原标题:BDM | 用于力学生物学研究的机械刺激装置:市场、文献和专利综述内容简介 本综述论文聚焦用于力学生物学研究装备,分析

原标题:BDM | 用于力学生物学研究的机械刺激装置:市场、文献和专利综述

内容简介

本综述论文聚焦用于力学生物学研究装备,分析了其科研、市场现状,并探讨了其可能的未来发展方向。各种研究和技术领域的重大进步促成了对人体生理动力学的显著发现。为了更准确地模拟复杂的生理环境,研究已从二维(2D)培养系统转向更复杂的三维(3D)动态培养。与生物反应器或基于微流体的培养模型不同,细胞通常接种在聚合物基质上或载入3D打印结构中,并对这些结构施加机械刺激以研究细胞对机械应力(例如拉伸或压缩)的反应。本综述侧重于目前市场上可用的或由研究团队定制或受专利保护的机械刺激装置的工作原理,并强调了仍有待改进的主要功能。这些功能可以用于在未来进行更可靠和准确的机械生物学研究。

文章导读

图1 细胞培养模型可以处于静态或动态模式

图2 用于力学生物学研究的机械刺激装置示例

图3 使用市售设备的研究的细胞结果

图4 四种拉伸工作原理的表示

参考文献

上下滑动以阅览

1. Roy AL, Conroy RS (2018) Toward mapping the human body at a cellular resolution. Mol Biol Cell 29:1779–1785. https://doi.org/10.1091/mbc.E18-04-0260

2. Jackson EL, Lu H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol 8:672–683. https://doi.org/10.1039/c6ib00039h

4. Raveling AR, Theodossiou SK, Schiele NR (2018) A 3D printed mechanical bioreactor for investigating mechanobiology and soft tissue mechanics. MethodsX 5:924–932. https://doi.org/10.1016/j.mex.2018.08.001

5. Yi N, Cui H, Zhang LG et al (2019) Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 95:91–111. https://doi.org/10.1016/j.actbio.2019.04.032

6. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 1840:2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010

7. Uto K, Tsui JH, Deforest CA et al (2017) Dynamically tunable cell culture platforms for tissue engineering and mechanobiology. Prog Polym Sci 65:53–82. https://doi.org/10.1016/j.progpolymsci.2016.09.004

8. Li L, Eyckmans J, Chen CS (2017) Designer biomaterials for mechanobiology. Nat Mater 16:1164–1168. https://doi.org/10.1038/nmat5049

9. Jansen KA, Donato DM, Balcioglu HE et al (2015) A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta Mol Cell Res 1853:3043–3052. https://doi.org/10.1016/j.bbamcr.2015.05.007

10. Orr AW, Helmke BP, Blackman BR et al (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20. https://doi.org/10.1016/j.devcel.2005.12.006

11. Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18:728–742. https://doi.org/10.1038/nrm.2017.108

12. Chen Y, Ju L, Rushdi M et al (2017) Receptor-mediated cell mechanosensing. Mol Biol Cell 28:3134–3155. https://doi.org/10.1091/mbc.e17-04-0228

13. Wittkowske C, Reilly GC, Lacroix D et al (2016) In vitro bone cell models?: impact of fluid shear stress on bone formation. Front Bioeng Biotechnol 4:1–22. https://doi.org/10.3389/fbioe.2016.00087

15. DuFort CC, Paszek MJ, Weaver VM (2001) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319. https://doi.org/10.1038/nrm3112

18. Desma?le D, Boukallel M, Régnier S (2011) Actuation means for the mechanical stimulation of living cells via microelectromechanical systems: a critical review. J Biomech 44:1433–1446. https://doi.org/10.1016/j.jbiomech.2011.02.085

19. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772. https://doi.org/10.1038/nbt.2989

21. Brunelli M, Perrault C, Lacroix D (2019) A review of bioreactors and mechanical stimuli. In: Lacroix D, Brunelli M, Perrault C et al (Eds.), Multiscale Mechanobiology in Tissue Engineering. Springer Singapore, Singapore, pp 1–22. https://doi.org/10.1007/978-981-10-8075-3_1

22. Eaker S, Abraham E, Allickson J et al (2017) Bioreactors for cell therapies: current status and future advances. Cytotherapy 19:9–18. https://doi.org/10.1016/j.jcyt.2016.09.011

23. Mckee C, Chaudhry GR (2017) Advances and challenges in stem cell culture. Colloids Surf B Biointerf 159:62–77. https://doi.org/10.1016/j.colsurfb.2017.07.051

24. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48:171–181. https://doi.org/10.1016/j.bone.2010.09.138

26. King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11:394–398. https://doi.org/10.1016/j.cbpa.2007.05.034

28. Marijanovic I, Antunovic M, Matic I et al (2016) Bioreactor-based bone tissue engineering. In: Zorzi AR, Batistade Miranda J (Eds.), Advanced Techniques in Bone Regeneration. InTech. https://doi.org/10.5772/62546

29. van Noort D (2016) Bioreactors on a chip. In: Mandenius CF (Ed.), Bioreactors: Design, Operation and Novel Applications (1st Ed.). Wiley-VCH Verlag GmbH & Co, KGaA, pp 77–112

31. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

32. Mann JM, Lam RHW, Weng S et al (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740. https://doi.org/10.1039/c2lc20896b

35. Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14. https://doi.org/10.1016/S0021-9290(99)00177-3

37. González-Bermúdez B, Guinea GV, Plaza GR (2019) Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys J 116:587–594. https://doi.org/10.1016/j.bpj.2019.01.004

38. Daza R, González-Bermúdez B, Cruces J et al (2019) Comparison of cell mechanical measurements provided by atomic force microscopy (AFM) and micropipette aspiration (MPA). J Mech Behav Biomed Mater 95:103–115. https://doi.org/10.1016/j.jmbbm.2019.03.031

40. Schierbaum N, Rheinlaender J, Sch?ffer TE (2019) Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Soft Matter 15:1721–1729. https://doi.org/10.1039/c8sm01585f

43. Qi MC, Hu J, Zou SJ et al (2008) Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg 37:453–458. https://doi.org/10.1016/J.IJOM.2007.12.008

44. Trepat X, Deng L, An SS et al (2007) Universal physical responses to stretch in the living cell. Nature 447:592–595. https://doi.org/10.1038/nature05824

47. Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14:160–166. https://doi.org/10.1016/j.tcb.2004.02.003

49. Halldorsson S, Lucumi E, Gómez-Sj?berg R et al (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231. https://doi.org/10.1016/j.bios.2014.07.029

53. Vanderploeg EJ, Imler SM, Brodkin KR et al (2004) Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech 37:1941–1952. https://doi.org/10.1016/j.jbiomech.2004.02.048

54. Connelly JT, Vanderploeg EJ, Mouw JK et al (2010) Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs. Tissue Eng Part A 16:1913–1923. https://doi.org/10.1089/ten.tea.2009.0561

55. Doroski DM, Levenston ME, Temenoff JS (2010) Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng Part A 16:3457–3466. https://doi.org/10.1089/ten.tea.2010.0233

56. Grier WK, Moy AS, Harley BAC (2017) Cyclic tensile strain enhances human mesenchymal stem cell SMAD 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds. Eur Cells Mater 33:227–239. https://doi.org/10.22203/eCM.v033a14

57. Subramanian G, Elsaadany M, Bialorucki C et al (2017) Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: design and validation study. Biotechnol Bioeng 114:1878–1887. https://doi.org/10.1002/bit.26304

58. Ralphs JR, Waggett AD, Benjamin M (2002) Actin stress fibres and cell–cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol 21:67–74. https://doi.org/10.1016/S0945-053X(01)00179-2

59. Simmons CA, Matlis S, Thornton AJ et al (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech 36:1087–1096. https://doi.org/10.1016/S0021-9290(03)00110-6

60. Sumanasinghe RD, Bernacki SH, Loboa EG (2006) Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12:3459–3465. https://doi.org/10.1089/ten.2006.12.3459

62. Ku CH, Johnson PH, Batten P et al (2006) Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71:548–556. https://doi.org/10.1016/j.cardiores.2006.03.022

63. Luo J, Qin L, Zhao L et al (2020) Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell 26:251–261. https://doi.org/10.1016/j.stem.2019.12.012

64. Kroll K, Chabria M, Wang K et al (2017) Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research. Prog Biophys Mol Biol 130:212–222. https://doi.org/10.1016/j.pbiomolbio.2017.07.003

65. Sitticholechaiwut A, Edwards JH, Scutt AM et al (2010) Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cells. Eur Cells Mater 20:45–57. https://doi.org/10.22203/eCM.v020a05

66. Sittichockechaiwut A, Scutt AM, Ryan AJ et al (2009) Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Bone 44:822–829. https://doi.org/10.1016/j.bone.2008.12.027

67. Kong Z, Li J, Zhao Q et al (2012) Dynamic compression promotes proliferation and neovascular networks of endothelial progenitor cells in demineralized bone matrix scaffold seed. J Appl Physiol 113:619–626. https://doi.org/10.1152/japplphysiol.00378.2011

68. Okazaki Y, Furumatsu T, Kamatsuki Y et al (2021) Differences between the root and horn cells of the human medial meniscus from the osteoarthritic knee in cellular characteristics and responses to mechanical stress. J Orthop Sci 26:230–236. https://doi.org/10.1016/j.jos.2020.02.015

71. Takahashi K, Ito S, Furuya K et al (2017) Real-time imaging of mechanically and chemically induced ATP release in human lung fibroblasts. Respir Physiol Neurobiol 242:96–101. https://doi.org/10.1016/j.resp.2017.04.008

72. Kamotani Y, Bersano-Begey T, Kato N et al (2008) Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials 29:2646–2655. https://doi.org/10.1016/j.biomaterials.2008.02.019

73. Gere JM, Timoshenko SP (1984) Mechanics of Materials (2nd Ed.). Brooks/Cole Engineering, Escondido

76. Jagodzinski M, Drescher M, Zeichen J et al (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cells Mater 7:35–41. https://doi.org/10.22203/eCM.v007a04

78. Butcher JT, Barrett BC, Nerem RM (2006) Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials 27:5252–5258. https://doi.org/10.1016/j.biomaterials.2006.05.040

81. Gould RA, Chin K, Santisakultarm TP et al (2012) Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater 8:1710–1719. https://doi.org/10.1016/j.actbio.2012.01.006

84. Rath B, Nam J, Knobloch TJ et al (2008) Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 41:1095–1103. https://doi.org/10.1016/j.jbiomech.2007.11.024

85. Ravichandran A, Lim J, Chong MSK et al (2017) In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J Biomed Mater Res Part B Appl Biomater 105:2366–2375. https://doi.org/10.1002/jbm.b.33772

86. Moraes C, Wang GH, Sun Y et al (2010) A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31:577–584. https://doi.org/10.1016/j.biomaterials.2009.09.068

87. Lee D, Erickson A, You T et al (2018) Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. Lab Chip 18:2077–2086. https://doi.org/10.1039/c8lc00320c

88. Moraes C, Zhao R, Likhitpanichkul M et al (2011) Semi-confined compression of microfabricated polymerized biomaterial constructs. J Micromech Microeng 21:054014. https://doi.org/10.1088/0960-1317/21/5/054014

89. Zhang ZZ, Chen YR, Wang SJ et al (2019) Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Sci Transl Med 11:eaao0750. https://doi.org/10.1126/scitranslmed.aao0750

90. Analytics C Web of Knowledge—Derwent Innovation Index. http://www.webofknowledge.com

91. Google Patents. https://patents.google.com

120. Quinn T, Majd H (2006) Device for cell culture on deformable surfaces (Patent No. EP 1 679 366 A1).

123. Takagi T, Watanabe S (2004) Cell and structure incubator (Patent No. EP 1 428 869 A1).

135. Birla RK, Huang YC, Dennis RG (2007) Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng 13:2239–2248. https://doi.org/10.1089/ten.2006.0359

137. Patronek GJ, Rauch A (2007) Systematic review of comparative studies examining alternatives to the harmful use of animals in biomedical education. J Am Vet Med Assoc 230:37–43. https://doi.org/10.2460/javma.230.1.37

138. Reifenrath J, Angrisani N, Lalk M et al (2014) Replacement, refinement, and reduction: necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res Part A 102:2884–2900. https://doi.org/10.1002/jbm.a.34920

关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,自2023年起改为双月刊,目前已被SCI-E等检索,2021影响因子为5.887,2022实时影响因子~7.4。

初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线Springerlink。一般两周左右即被SCI-E检索。

收稿方向:机械工程(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。

期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx

入群交流

围绕BDM刊物的投稿方向,本公众号建有“ 生物设计与制造”学术交流群,加小编微信号 icefires212入群交流,或扫以下二维码

责任编辑:

本文地址:http://www.uqian.cn/news/4149.html    极顶速云 http://www.uqian.cn/ , 查看更多
 
打赏
 
更多>同类行业资讯
0相关评论

公司基本资料信息
推荐图文
推荐行业资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报